Measure Theory with Ergodic Horizons Lecture 24

Classical Pointmix Ecyodic Theorem (Birkhoff 1931). let (X, B, p) be a probability space. A (8,8)neasurable p-preserving transformation T is ergodic iff for each fell(x, p) and for a.e. xEX, lim (average f over 4x, Tx, T²x,.., Tⁿx]) = fedt. Proof (D.) Invariance of limit, & tiling + local-global bridge. Invariance of limit. It AF := limsup Ant and AF := liminf Ant. Ve clain Met these functions are T-invaliant, i.e. pustant on each T-orbit. It is enough to verify Wt their values at every x & X are equal to their values at Tx. But for a fixed x EX, this is immediate from the fact that Antif (k) $\approx_{2n}^{\frac{N}{N-1}} A_n f(Tx)$, where $S_n = \frac{|f(x)|}{N+1}$ $T_{x} \xrightarrow{T_{x}} T_{x} \xrightarrow{T_{x}} T_{x} \xrightarrow{T_{x}} T_{x} \xrightarrow{T_{x}} T_{x} \xrightarrow{T_{x}} T_{x} \xrightarrow{T_{x}} \xrightarrow{T_{x}} T_{x} \xrightarrow{T_{x}} \xrightarrow{T_$ and same for limint. (+) tollows from the following elementary lemma. limma (about averages). Let X be a set and f: X-s (R. let U, V be disjoint nonemp-

ty finite subsets of X. Let
$$A_{u}f := he are case of force (l, i.e., $\frac{1}{|u|} \ge f(x)$. Then:
 $A_{u \parallel v}f = \frac{|u|}{|u|+|v|} A_{u}f + \frac{|v|}{|u|+|v|} A_{v}f$, i.e. $A_{uuv}f$ is a convex co-biaction of $A_{u}f$
 $u = 4x$?
 P_{coul} . Direct recipients.$$

T-invariance and the ergodicity of T imply (HW) that
$$\overline{A}f$$
 are $\underline{A}f$ are constant a.e.,
i.e. there are constants \overline{c} and \underline{c} such that the (T-invariant) subs $\overline{X} := \{x \in X : \overline{A}f(x) = \overline{c}\}$ and $\underline{X} := \{x \in X : \overline{A}f(x) = \overline{c}\}$ and $\underline{A}f = \overline{c}$.
 $\{x \in X : \overline{A}f(x) = \underline{c}\}$ are complet. Thus, restricting to $\overline{X}f(X)$, we may assume WLDG WLAF = \overline{c} and $\underline{A}f = \underline{c}$.

2. By considering
$$f$$
-Stdye instead, we may assume WLDGe WA Stdy= D . To prove
the theorem, we need to show that $\overline{Af} \leq O \leq \underline{Af}$. Suppose toward a contradiction,
that $\overline{Af} \equiv \overline{c} = 0$, so $\overline{Af} > \Delta = 0$ for some $\Delta = 0$. (The case $0 \leq \underline{Af}$ is handled simi-
larly.) Then let $X \mapsto N_X :=$ the least $n \in \mathbb{N}$ such that $A_{n_X}f(x) > \Delta = 0$.

We now make two assumptions which lose generality, and we will remove then later in HW:
(i)
$$f$$
 is bounded, i.e. $\|f\|_{u} = \sup |f(x)| < \infty$.
(ii) $x \mapsto n_{x}$ is bounded, say by $L > 0$.

tiling. Note that it x to the wave constant, so 100, then this would immediately waterwhich the local-global bridge:
$$0 = \int F_{y} - \int A_{rot} f(k) d\mu \ge \int \Delta d\mu \ge \Delta 20$$
.
Thus also the local-global bridge: $0 = \int F_{y} - \int A_{rot} f(k) d\mu \ge \int \Delta d\mu \ge \Delta 20$.
Thus also the local-global bridge: $0 = \int F_{y} - \int A_{rot} f(k) d\mu \ge \int \Delta d\mu \ge \Delta 20$.
Thus also the local-global bridge: $0 = \int F_{y} - \int A_{rot} f(k) d\mu \ge \int \Delta d\mu \ge \Delta 20$.
Thus also the local-global bridge: $0 = \int F_{y} - \int A_{rot} f(k) d\mu \ge \int \Delta d\mu \ge \Delta 20$.
Thus also the local-global bridge: $0 = \int F_{y} - F_{y} - \int F_{y} - F_{y} - F_{y} - \int F_{y} - F_{y} - F_{y} - \int F_{y} - F_$